
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

30

Producer Consumer: A Fundamental Design Pattern

2 Producer Consumer: A
Fundamental Design Pattern

This chapter provides an introduction to

• a simple producer – consumer design pattern
• shows how a set of processes can be invoked using the PAR helper class
• shows how processes and channels interact with one another
• demonstrates the ease with which processes can be reused

For many people, the first program they write in a new language is to print “Hello World”, followed by
the inputting of a person’s name so the program can be extended to print “Hello name”. In the parallel
world this is modified to a program that captures one of the fundamental design patterns of parallel
systems, namely a Producer – Consumer system.

A Producer process is one that outputs a sequence of distinct data values. A Consumer process is one
that inputs a stream of such data values and then processes them in some way. The composition of a
Producer and Consumer together immediately generate some interesting possibilities for things to go
wrong. What happens if?

the Producer process is ready to output some data before the Consumer is ready or

the Consumer process is ready to input but no data is available from the Producer

In many situations, the programmer would resort to introducing some form of buffer between the
Producer and Consumer to take account of any variation in the execution rate of the processes. This
then introduces further difficulties in our ability to reason about the operation of the combined system;
such as the buffer becomes full so the Producer has to stop outputting, or conversely it becomes empty
and the Consumer cannot input any data. We have just put off the decision. In fact, we have made it
much harder to both program the system and to reason about it. In addition, we now have to consider
the situation when the buffer fails for some reason. Fortunately, the definitions of process and channel
given in Chapter 1 come to our rescue.

If the Producer process is connected to the Consumer process by a channel then we know that the
processes synchronise with each other when they transfer data over the channel. Thus if the Producer
tries to output or write data before the Consumer is ready to input or read data then the Producer waits
until the Consumer is ready and vice-versa. It is therefore impossible for any data to be lost or spurious
values created during the data communication.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

31

Producer Consumer: A Fundamental Design Pattern

2.1 A Parallel Hello World

2.1.1 Hello World Producer

The producer process for Hello-World is shown in Listing 2-1. Line {10–20} defines the class ProduceHW
that implements the interface CSProcess, which defines a single method run() that is used to invoke
the process. The interface CSProcess is contained in the package org.jcsp.lang, which has to be
imported (not shown).

10 class ProduceHW implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run() {
15 def hi = "Hello"
16 def thing = "World"
17 outChannel.write (hi)
18 outChannel.write (thing)
19 }
20 }

Listing 2-1 Hello World Producer Process

The only class property, outChannel {12}, of type ChannelOutput, is the channel upon which the
process will output using a write() method. Strictly, Groovy does not require the typing of properties,
or any other defined variable, however, for documentation purposes we adopt the convention of giving
the type of all properties. This also has the advantage of allowing the compiler to check type rules and
provides additional safety when processes are formed into process networks. Each process has only one
method, the run() method as shown starting at line {14}. Two variables are defined {15, 16}, hi and
thing, that hold the strings “Hello” and “World” respectively. These are then written in sequence to
outChannel {17, 18}.

2.1.2 Hello World Consumer

The ConsumeHello process, Listing 2-2, has a property inChannel {12} of type ChannelInput. Such
channels can only input objects from the channel using a read() method. Its run() method firstly,
reads in two variables, first and second, from its inChannel {15, 16}, which are then printed {17}
to the console window with preceding and following new lines (\n). The notation $v indicates that the
variable v should be evaluated to its String representation

10 class ConsumeHello implements CSProcess {
11
12 def ChannelInput inChannel
13
14 void run() {

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

32

Producer Consumer: A Fundamental Design Pattern

15 def first = inChannel.read()
16 def second = inChannel.read()
17 println "\n$first $second!\n"
18 }
19 }

Listing 2-2 Hello World Consumer Process

2.1.3 Hello World Script

Figure 2-1 shows the process network diagram for this simple system comprising two processes
ProduceHW and ConsumeHello that communicate over a channel named connect.

Figure 2-1 Producer Consumer Process Network

The script, called RunHelloWorld for executing the processes ProduceHW and ConsumeHW is shown
in Listing 2-3. It is this script that is invoked to execute the process network.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

33

Producer Consumer: A Fundamental Design Pattern

10 def connect = Channel.one2one()
11
12 def processList = [
13 new ProduceHW (outChannel: connect.out()),
14 new ConsumeHello (inChannel: connect.in())
15]
16 new PAR (processList).run()

Listing 2-3 Hello World Script

An imported package org.jcsp.lang contains the classes required for the JCSP library. Another
package org.jcsp.groovy contains the definitions of the Groovy parallel helper classes. The referenced
libraries and documentation contain a more complete specification and description of their use. The PAR
class {16} causes the parallel invocation of a list of processes. This is achieved by calling the run() method
of PAR, which in turn causes the execution of the run() method of each of the processes in the list.

The channel connect is of type Channel.one2one {10}. The channel is created by means of a
static method one2one in the class Channel contained within the package org.jcsp.lang. The
processList {12} comprises an instance of ProducerHW with it’s outChannel property set to the
out end of connect, and the processes ConsumerHW with its inChannel property set to the in end
of connect {13, 14}.

The underlying JCSP library attempts, as far as possible, to ensure networks of processes are connected in
a manner that can be easily checked. The channel connect {10} is defined to have a one2one interface
and therefore it has one output end and one input end. These are defined by the methods out() {13}
and in() {14} respectively. A class that contains a property of type ChannelOutput must be passed
an actual parameter that has been defined with a call to out() and within that process only write()
method calls are permitted on the channel property. The converse is true for input channels. In all process
network diagrams the arrow head associated with a channel will refer to the input end of the channel.

The output from executing this script is shown in Output 2-1.

Hello World!

Output 2-1 Output from Hello World Script

2.2 Hello Name

The Hello Name system is a simple extension of the Hello World system. The only change is that the
ProducerHN {10} process asks the user for their name and then sends this to the Consumer process as
the thing variable {16, 18} in Listing 2-4.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

34

Producer Consumer: A Fundamental Design Pattern

10 class ProduceHN implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run() {
15 def hi = "Hello"
16 def thing = Ask.string ("\nName ? ")
17 outChannel.write (hi)
18 outChannel.write (thing)
19 }
20 }

Listing 2-4 The ProduceHN Process

An imported package phw.util contains some simple console interaction methods that can be used
to obtain input from the user from the console window. The Ask.string method outputs the prompt
“Name ?” after a new line and the user response is then placed into the variable thing {16}.

The Consumer process remains unaltered from the version shown in Listing 2-2. Similarly, the script
to run the processes is the same as Listing 2-3 except that the name of the producer process has been
changed to ProduceHN. A typical output from the execution of the script is shown in Output 2-2, where
user typed input is shown in italics. This also shows how easy it is to reuse a process in another network.

Name ? Jon

Hello Jon!

Output 2-2 Output from Hello Name Network

2.3 Processing Simple Streams of Data

The final example in this chapter requires the user to type in a stream of integers into a producer process
that writes them to a consumer process, which then prints them. The specification of the Producer
process is given in Listing 2-5.

10 class Producer implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run() {
15 def i = 1000
16 while (i > 0) {
17 i = Ask.Int ("next: ", -100, 100)
18 outChannel.write (i)
19 }
20 }
21 }

Listing 2-5 The Producer Process

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

35

Producer Consumer: A Fundamental Design Pattern

The run() {14} method is formulated as a while loop {16–19}, which is terminated as soon as the
user inputs zero or negative number. The input integer value is obtained using the Ask.Int (from phw.
util) method that will ensure that any input lies between -100 to 100 {17}. The while loop has been
structured to ensure the final zero is also output to the Consumer process.

10 class Consumer implements CSProcess {
11
12 def ChannelInput inChannel
13
14 void run() {
15 def i = 1000
16 while (i > 0) {
17 i = inChannel.read()
18 println "the input was : $i"
19 }
20 println "Finished"
21 }
22 }

Listing 2-6 The Consumer Process

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

36

Producer Consumer: A Fundamental Design Pattern

The Consumer process is shown in Listing 2-6. The Consumer {10} process reads data {17} from its
input channel, inChannel {12}, which is then printed {18}. Once a zero is read the while loop {16–19}
terminates resulting in the printing of the “Finished” message {20}.

The script, called RunProducerConsumer that causes the execution of the network of processes is
shown in Listing 2-7 which is very similar to the previous script shown in Listing 2-3, the only change
being, the names of the processes that make up the list of processes {12, 13}.

10 def connect = Channel.one2one()
11
12 def processList = [new Producer (outChannel: connect.out()),
13 new Consumer (inChannel: connect.in())
14]
15 new PAR (processList).run()

Listing 2-7 The Producer Consumer System Script

Output from a typical execution of the processes is given in Output 2-3.

next: 1

next: the input was : 1

2

the input was : 2

next: 3

the input was : 3

next: 0

the input was : 0

Finished

Output 2-3 Typical Results from Producer Consumer System

The output, especially when executed from within Eclipse, can be seen to be correct but the output is
somewhat confused as we have two processes writing concurrently to a single console at the same time;
both processes use println statements. We therefore have no control of the order in which outputs
appear and these often become interleaved. A process called GConsole is available in the package org.
jcsp.groovy.plugAndPlay that creates a console window with both an input and output area. This
process can be used to provide a specific console facility for a given process. Many such GConsole
processes can be executed in a network of processes as required. Its use will be demonstrated in
later chapters.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

37

Producer Consumer: A Fundamental Design Pattern

2.4 Summary

This chapter has introduced the basic use of many simple JCSP concepts. A set of simple Producer –
Consumer based systems have been implemented and output from these systems has also been given.
These basic building blocks of processes and channels, with their simple semantics are the basis for all
the concurrent and parallel systems we shall be building throughout the rest of this book.

2.5 Exercises

Exercise 2-1

Using Listing 2-7 as a basic design implement and test a new process called Multiply that
is inserted into the network between the Producer and Consumer processes which takes an
input value from the Producer process and multiplies it by some constant factor before
outputting it to the Consumer process. The multiplication factor should be one of the
properties of the Multiply process. To make the output more meaningful you may want to
change the output text in the Consumer process. You should reuse the Producer process
from the ChapterExamples project in src package c2.

Exercise 2-2

A system inputs data objects that contain three integers; it is required to output the data in
objects that contain eight integers. Write and test a system that undertakes this operation.
The process ChapterExercises/src/c2.GenerateSetsOfThree outputs a sequence of
Lists, each of which contains three positive integers. The sequence is to be terminated by a
List comprising [-1, -1, -1].

What change is required to output objects containing six integers? How could you parameterise
this in the system to output objects that contain any number of integers (e.g. 2, 4, 8, 12)? What
happens if the number of integers required in the output stream is not a factor of the total
number of integers in the input stream (e.g. 5 or 7)?

http://bookboon.com/

